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Particle Aggregation versus Cluster Aggregation 
in High Dimensions 

R. C. Ball ~ and T. A. Wltten 2 

We distinguish two different types of irreversible aggregation--accretion of 
individual particles and successive aggregation of clusters of comparable size. In 
aggregation of particles which follow trajectories of fractal dimension D~ we 
show that physical limits on the aggregation rate impose a lower bound on the 
fractal dimension D o of the aggregate. In d-dimensional space, D O >~ d - D~ + 1. 
Thus aggregation of ballistic particles, with D~ = 1, is not fractal. By contrast, 
cluster aggregates appear to attain a finite, limiting D O in high dimensions. We 
present a soluble model with this property, and argue that it should agree with 
Sutherland's binary aggregation model in high dimensions. For this model, D O 
depends continuously on a parameter; the exponent is not universal. 

KEY WORDS: Fractals; aggregation; dendritic growth; critical phenomena; 
upper critical dimension. 

1. I N T R O D U C T I O N  

One realization of fractal structure in nature seems to be in large aggregates 
of irreversibly agglomerated particles, such as colloidal particles. The 

fascinating tenuous quality of such aggregates has been noticed for a long 

time by colloidal scientists. ~1) More recently the interior structure of these 
aggregates has been studied by direct measurements (2'3) and by computer 

simulations. (4'5) It appears that the interior correlations of particle density 

have a scale-invariant form characteristic of a fractal (6) object. In the last 

few months two distinct classes of fractal aggregates have been identified. 

Aggregates of the first class are those formed by the successive accretion of 
independent single particles; we denote such processes as particle 
aggregation. (4,7-9) The second class of aggregation process is the aggregation 
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of aggregates, or cluster aggregation. (5'1~ Most colloidal aggregation 
phenomena appear to belong to this second class. Here the dominant process 
is the fusion of two aggregates of comparable size, rather than the accretion 
of small objects onto increasingly large ones. 

A particle aggregate assumes a fractal dimension D o which depends on 
how the constitutent particles move. Thus diffusion-limited aggregates, (4~ 
where the constituent particles move in random walks, have a fractal 
dimension D o of about 2.4. In ballistic aggregation, where the particles move 
in random straight-line trajectories, t7'8~ D o is larger. 

Cluster aggregation has recently been explored entensively by 
simulation, ~s~ generalizing Sutherland's original model, u~ These aggregates 
have a lower fractal dimension than do particle aggregates, with D O ~ 1.7 in 
three dimensions. In cluster aggregation, the type of motion of the fusing 
clusters makes no apparent difference to the fractal dimension. Brownian 
motion and ballistic motion produce essentially the same structure, in 
contrast to particle aggregation. 

Our approach to understanding these aggregates has been to exploit the 
simplifying features that appear in high-dimensional space. In high 
dimensions the two classes of growth emerge as completely different 
phenomena. Here we present two new results that underline this difference. 
For particle aggregation we show (11~ that the fractal dimension must be 
nearly equal to the dimension of space d in order to avoid unphysically fast 
growth. Indeed, the codimension d - D o must be smaller than the dimension 
of the particle trajectories, D 1, plus 1. For Brownian particles, this means 
d - D  o ~ I; for ballistic particles, it means D o = d. For cluster aggregation 
the reverse appears to be true: D o does not increase indefinitely. We argue (11~ 
that D o in the Sutherland model attains a fixed value in high dimensions. In 
this respect cluster aggregation behaves like classical random fractals such 
as self-avoiding walks and random animals. (12~ But there is a fundamental 
difference. This asymptotic D O is not universal. It depends, e.g., on the ratio 
of sizes of the fusing constituents. 

2. PARTICLE A G G R E G A T I O N  

We consider first the limitations on D for particle aggregation. We 
assume that the aggregate consists initially of a seed particle at the origin. 
The seed particle is immersed in a dilute gas of moving particles of some 
microscopic radius a. Whenever a moving particle touches the aggregate, it 
is adsorbed, thus increasing the mass and size of the aggregate. Because of 
this adsorption, the outer radius R of the aggregate grows in time. Initially, 
the growth speed d R / d t  has some value v 0 proportional to the density u of 
moving particles. Later, the growth speed is proportional to the flux of 
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particles onto the outer tips of  the aggregate. This flux is partly screened by 
the rest of the aggregate, and is thus smaller than it was initially. Thus the 
growth speed can only decrease in time: dR/d t  < Vo ~ u. Other characteristic 
radii, such as the radius of gyration, are necessarily smaller than the outer 
radius, and thus can grow no faster than this dR~dr. 

The flux of particles onto an existing aggregate is related in a simple 
way to its radius. This may be seen for a variety of types of motion using a 
geometric picture. We imagine the trajectories of all the moving particles as 
they would have been in the absence of the aggregate. We suppose that each 
particle takes one step per unit time. The density of steps after time t is 
simply ut, and the average number of contacts with the aggregate is Mut.  
The trajectories which produce these contacts evidently enter the aggregate 
region, within distance R of the origin. The average number M01 of 
contacts ~6't3) of one trajectory with the aggregate obeys 

Mol ~ R D ~  "~ const (1) 

In particle aggregation this power is positive; a typical trajectory within the 
cluster region intersects the aggregate many times. The number C of  f i rs t  
contacts between trajectories and the aggregate is the total number divided 
by the number per trajectory: 

C ~ M u t R  a-D~ ~ utR d-D1 

The number is thus independent of Do; since a particle entering the 
aggregate region has a probability of contact approaching 1, the number of 
first contacts is the same as for a solid absorbing sphere with radius of order 
R. The aggregate is "opaque" to the particles, and the actual density within 
the aggregate is not important. 

Each time C increases by 1, a trajectory touches the aggregate and is 
adsorbed. Thus the flux onto the aggregate is dC/dt.  This adsorbed flux 
increases the mass M of the aggregate: d M / d t  = dC/dt.  This in turn can be 
related to the growth speed dR/dt:  d M / d t = d M / d R  dR/dt .  Using our 
expression for the flux dM/dt ,  and the power law relation M ~  R ~~ this 
gives 3 

uR a-e1 + D o +  1 ~ dR/d t  

Since dR/dr  is bounded by Vo ~ u, the exponent of R must be nonnegat ive--  
even in the dilute limit u ~ 0. Thus 

D o > / d  + D l -- 1 

This is the desired limit on D o . 

3 This relation for dr/dr was derived for diffusing particles by J. M. Deutch and P. Meakin 
(Ref. 14) using a more conventional approach. 



876 Ball and Witten 

The limit is consistent With reported simulations of diffusion-limited 
aggregation. (15) It is also consistent with the Levy-flight aggregation study of 
Meakin, ~ and with his extensive study of ballistic aggregation. But it 
disagrees with the reported D o of 1.93 for two-dimensional ballistic 
aggregation by Bensimon et al., ~8) and with Henschel's formula (16) for D O 
found via a Flory argument. 

3. CLUSTER AGGREGATION 

The fractal dimension of cluster aggregates is governed by completely 
different considerations than those above. To understand the essential 
features of this process better, we have constructed a solvable variant of the 
Sutherland model which we call "Sutherland's ghost." In the original 
Sutherland model, ~176 pairs of monomers are assembled to form an ensemble 
of dimers in random orientations. Two of these dimers are then selected at 
random and are moved toward each other along arbitrary straight line until 
they touch, thus forming a tetramer. By taking all possible dimer orien- 
tations, one thus constructs an ensemble of tetramers. These are used to 
make an ensemble of octamers, and so on. 

Our ghost model is like Sutherland's model, except that we allow the 
particles to interpenetrate freely. We also dispense with the trajectories. Our 
dimers are assembled into tetramers by choosing a monomer of each dimer 
at random and linking them together in a random direction. Thus the orien- 
tation of each dimer and of the connecting link between the chosen 
monomers are all independent. Octomers are made by taking a monomer 
from each o f  two arbitrary tetramers and linking these together at random. 
The process may clearly be continued indefinitely. 

The size of these ghost aggregates can be calculated straightforwardly. 
We define the average "chemical" distance Q(M) between two arbitrary 
monomers of a cluster of mass M. The chemical distance between two 
monomers means the number of connecting links which must be traversed to 
go from one to the other. The distance Q(2M) is related simply to Q(M). 
Any 2M-mer was formed from two M-mers, which we call the A and the B 
cluster. To find Q(2M), we select two monomers at random on the 2M-mer. 
The two belong to the A cluster with probability 1/4. If  they do, the average 
distance between them is Q(M). In the same way the two monomers may 
both belong to the B cluster. Finally one monomer may belong to each 
cluster; this occurs with probability 1/2. Then the distance between them is 
the distance between the first monomer and the connecting link, plus the 
distance between this link and the second. Since the connecting link itself 
was arbitrary, each of the two subdistances averages to Q(M). We now find 
Q(2M) by taking a weighted average: 
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Q(2M) = 1/4 Q(M) + 1/4 Q(M) + 1/2 [Q(M) + Q(M)] 

= 3/2 Q(M) 

Thus evidently, Q(M) = M x, where X = log(3/2)/log(2). 
To determine the fractal dimension D 0, we must relate the chemical 

distance Q(M) to geometric distance. The displacement between two 
arbitrary monomers at chemical distance q is the sum of the q connecting 
link vectors. These are independent, random vectors of unit length. Thus the 
connecting path is a random walk, and its mean-square end-to-end distance 
r z is q. The average mean square distance R2(M) is the average of q, viz. 
Q(M). In view of the scaling of Q(M), we conclude 

M ~ R 2/x 

Thus the mass M scales with a geometric size R as in a fractal object with 
D O = 2IX = 2 log(2)/log(3/2) ~ 3.4. It seems clear (17) that the scaling of the 
average mass M(a) within radius a of an arbitrary monomer scales with the 
same power. In this sense the Sutherland's ghost model produces fractal 
objects with D o = 2 log(2)/log(3/2). 

We expect that this ghost model has the same scaling as the original 
Sutherland model in sufficiently high dimensions. To see this, we compare 
the ensemble of ghost aggregates with the ensemble of original Sutherland 
aggregates. This ensemble is only a subset of the ghost ensemble. In the 
ghost ensemble each monomer has an equal chance to be linked. Each has 
equal "exposure." Sutherland aggregates by contrast are made by sliding 
pairs of M-mers together until they touch; the first touch thus terminates the 
motion and defines the aggregate. Clearly then, the outer monomers of an 
aggregate have a greater chance to be linked than do the inner ones. As the 
cluster grows, the exposed monomers would in general become a smaller and 
smaller fraction of the total. Since it is the outer monomers that get linked, 
the size of the linked pair of a given mass tends to be greater than in the 
ghost ensemble. Thus the fractal dimension of the Sutherland aggregates 
should be less than or equal to that of the ghost aggregates. 

In high dimensions, however, we expect that all monomers are 
comparably exposed to further growth, even in the original Sutherland 
model. To see this we consider an arbitrary monomer on the A and the B 
cluster, each placed randomly in space. The Sutherland model instructs us to 
move cluster B toward cluster A along the line joining these two monomers, 
until there is a contact. During this motion there is some probability of a 
contact before the two chosen monomers touch. Unless that probability is 
large, the two chosen monomers are exposed. To estimate the probability of 
contact, we consider the space swept out by the B cluster as it approaches 
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the A cluster. This is a fractal object of dimension D o + 1. This B fractal has 
a certain number of contacts M~B with the A cluster. Since the two objects 
are uncorrelated fractals, the average number of contacts scales according to 
Eq. (1) above: 

MAB ~ R 2D~ 1 - d  .ji_ c o n s t  

The D o of Sutherland aggregates should be no greater than the ghost value of 
about 3.4, as argued above. Thus, for d >  2D 0 +  1, the power of R is 
negative, and the average number of contacts remains limited as R grows to 
infinity. Evidently the probability of contact does not grow indefinitely large, 
so that two arbitrary monomers remain exposed, even on the largest clusters. 
But this means that the Sutherland ensemble does not differ qualitatively 
from the ghost ensemble, and the two should have the same fractal 
dimension. 

The ghost model may be readily generalized to show that cluster 
aggregates do not have a universal D O values. To this end, we consider the 
"asymmetric ghost" model. This is identical to the ghost model above, except 
that the two constituent aggregates do not have equal mass. Instead, an A 
cluster of mass M is combined with a B custer of ross kM. The mass ratio k 
is held fixed as the process is repeated. Now when an arbitrary monomer of 
the combined AB cluster is chosen, it has probability 1/(1 + k) of being on 
the A constituent, and probability k/(1 + k) of being on the B constituent. 
Our formula for the average chemical distance Q is revised: 

Q(M + kM)= [1/(1 + k)] 2 Q(M)+ [k/(1 + k)] 2 O(kM) 

+ 2k/(1 + k)2[O(M) + a(kM)] 

Now the exponent X must satisfy 

( l + k )  2 + x = l + k  2+x + 2k(l + k x) 

Evidently X varies with k; hence so does the fractal dimension. Universality 
is lost. 

The dependence of D O on k instructive. Clearly, Do(k ) = DO(1/k ), since 
the same is true for X. One may easily check that for large k, D O ~ 2 log(k). 
Thus as the ratio k diverges, D O ~ do in accord with the Eden growth 
model (13'18) in high dimensions. Further, Do(k ) has a very broad minimum at 
k = 1. Indeed, over the range 0.1 < k < 10, D O increases by less than 50% 
above the ghost value. 

The nonuniversality of cluster aggregation in high dimensions could 
well be reflected in  real three-dimensional aggregation. Any effect which 
tended to change the typical ratio of two aggregating clusters would be 



Particle Aggregation vs. Cluster Aggregation in High Dimensions 879 

expected to change the observed D o as well. Such an effect would be the 

mass dependence of the cluster mobility. Meakin (~) has looked for just  such 

effects on D o and has seen none. However, the expected changes in Do are 
quite weak, since in our model D o depends only weakly on k. Such a weak 

variation could easily have escaped detection in the simulations. ~19) Further 

simulations, designed to look for this nonuniversal i ty  would be important  
and instructive. 
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